Nowy numer 29/2019 Archiwum

Nagrody Nobla.

Fizyka. Abstrakcyjna nagroda

Wciągu każdej sekundy przez nasze ciała przenika kilkadziesiąt bilionów neutrin. Abstrakcyjnie dużo. Masa każdego z nich jest mniejsza niż miliardowa część masy atomu wodoru. Abstrakcyjnie mało. Takie właśnie są neutrina. Abstrakcyjne. Za ich badania przyznano tegorocznego Nobla z fizyki. Prawie w ogóle nie oddziałują z materią. Po prostu przez nią przenikają. Zupełnie tak, jak gdyby była dla nich przezroczysta. Nie stanowią dla nich żadnej przeszkody ciała niebieskie, jak i olbrzymie odległości, które pokonują z prędkością zbliżoną do prędkości światła. Powstają w czasie reakcji jądrowych, nie mają ładunku i posiadają nieskończenie małą masę. Neutrina występują w trzech odmianach. Najlepiej poznane są tzw. neutrina elektronowe, ale oprócz nich istnieją jeszcze neutrina taonowe i mionowe. Tegoroczni nobliści, Artur McDonald z Uniwersytetu Królowej w Kingston, i Takaaki Kajita z Uniwersytetu w Tokio, zostali uhonorowani za udowodnienie, że neutrina mają masę i że potrafią oscylować. Dlaczego badanie neutrin zasługuje na najbardziej prestiżową nagrodę naukową na świecie? Neutrina są być może najliczniejszą grupą cząstek, jakie „zasiedlają” nasz wszechświat. W ciągu każdej sekundy przez nasze ciała przenika ich kilkadziesiąt miliardów. Abstrakcyjnie dużo. Skoro chcemy poznać wszechświat, skoro mamy ambicje, by go zrozumieć, nie poradzimy sobie bez wiedzy o neutrinach. Przez lata uważano, że są to cząstki bezmasowe, czyli że w ogóle nie mają masy. W rzeczywistości ważą, choć tyle co nic. W przypadku tak małych i ulotnych obiektów trudno mówić o precyzyjnym pomiarze masy, ale szacunkowo masę neutrin określa się na miliardowe części masy atomu wodoru. Abstrakcyjnie mało. Neutrina nie zachowują się jednak jak zwykłe maleńkie kuleczki w trzech różnych kolorach. Trzy rodzaje neutrin niemal od początku badań eksperymentalnych nad tymi cząstkami nie dawały naukowcom spokoju. Pora, by przytoczyć coś, co w historii fizyki nazywane jest tajemnicą neutrin słonecznych. Naukowcy doskonale wiedzą, w wyniku jakich reakcji powstają neutrina. W naszym najbliższym (kosmicznym) otoczeniu największym źródłem neutrin jest Słońce. Badacze doskonale zdawali sobie sprawę z tego, ile neutrin elektronowych powstaje we wnętrzu naszej dziennej gwiazdy. Dzięki temu z dużą precyzją mogli obliczyć, ile z nich powinno trafiać na Ziemię i ile powinno być rejestrowanych.

Przez lata problem polegał jednak na tym, że te przewidywania teoretyczne nijak się miały do danych eksperymentalnych. Neutrin elektronowych na Ziemi rejestrowano o wiele mniej (aż o ok. 70 proc. mniej), niż powinno ich być. Możliwości były dwie. Albo reakcje, które według fizyków powinny zachodzić w jądrze Słońca, wcale tam nie zachodzą i dlatego o wiele mniej neutrin elektronowych dociera do Ziemi, albo w czasie swojej podróży pomiędzy gwiazdą a naszą planetą coś z neutrinami się dzieje. Ostatecznie okazało się, że fizycy mieli rację co do procesów zachodzących w Słońcu. Neutrina mają zupełnie niesamowitą zdolność do oscylowania, czyli do zamieniania się cząstek jednego rodzaju w cząstki innego rodzaju. Jedne neutrina spontanicznie zmieniają się w inne. W naszym świecie dużych przedmiotów to zdolność mocno abstrakcyjna. Jak można ją sobie wyobrazić? A czy można sobie wyobrazić spadające z drzewa jabłko, które w czasie lotu ku powierzchni gruntu spontanicznie zamieni się w śliwkę, po to, by ostatecznie upaść na trawę jako gruszka? Takie właśnie są neutrina. Abstrakcyjne.  Kluczem do rozwiązania tajemnicy neutrin słonecznych było więc przyglądanie się nie neutrinom jednego rodzaju, tylko neutrinom wszystkich rodzajów, które pochodzą ze Słońca. Przez wiele lat nie potrafiono jednak tego robić. Łapanie neutrin jest piekielnie trudne. Ich kolizje z atomami naszej materii są niezmiernie rzadkie. Bardzo łatwo pomylić je z innymi cząstkami, dlatego detektory neutrin umieszcza się głęboko pod ziemią i wypełnia superczystą wodą. Kolizja neutrina z atomem powoduje ulotny błysk światła. To światło jest rejestrowane przez niezwykle czułe urządzenia. Z charakterystyki tych błysków wyciąga się wnioski dotyczące neutrin.

« 1 »
oceń artykuł Pobieranie..

Zobacz także

Ze względów bezpieczeństwa, kiedy korzystasz z możliwości napisania komentarza lub dodania intencji, w logach systemowych zapisuje się Twoje IP. Mają do niego dostęp wyłącznie uprawnieni administratorzy systemu. Administratorem Twoich danych jest Instytut Gość Media, z siedzibą w Katowicach 40-042, ul. Wita Stwosza 11. Szanujemy Twoje dane i chronimy je. Szczegółowe informacje na ten temat oraz i prawa, jakie Ci przysługują, opisaliśmy w Polityce prywatności.

Zamieszczone komentarze są prywatnymi opiniami ich autorów i nie odzwierciedlają poglądów redakcji